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Why again logic synthesis?

Strong intellectual value associated with logic
synthesis and optimization

Problems are far from being solved

Current methods and tools grew out of control and
random logic design for CMOS semicustom libraries

Still inefficient for computational engines with predominance
of arithmetic units

Emerging nanotechnologies
New devices are game changers
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The emerging nano-technologies

= Enhanced silicon CMQOS is likely to remain the main
manufacturing process in the medium term
The 10nm and 7nm technology nodes are on the way

= What are the candidate technologies for the 5nm
node and beyond?
Silicon Nanowires (SiNW)
Tunneling FETs (TFET)
Carbon Nanotubes (CNT)
2D devices (flatronics)

= What are the common denominators from a design
standpoint?

(c) Giovanni De Micheli



22 nm Tri-Gate transistors

32 nm Planar Transistors 22 nm Tri-Gate Transistors

Oxide

[Courtesy: M. Bohr]
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From FINFET to Nanowire FET

FINFET NanoWire FET
Three-sided gate Gate All Around



Electrostatic doping

= Electrically program the transistor to either p-type or n-type

= Field-effect control of the Schottky barrier



Silicon Nanowire Transistors

= (GGate all around transistors

= Double gate to control polarity
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Logic level abstraction

Three terminal transistors are switches
A loaded transistor is an inverter

Controllable-polarity transistors compare two values
A loaded transistor is an exclusive or (EXOR)

The intrinsic higher computational expressiveness

leads to more efficient data-path design

The larger number of terminals must be
compensated by smart wiring
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Logic cell design

= CMOS technology is efficient only for negative-unate functions
= INV, NAND, NOR, AQOI

= Controllable-polarity logic is efficient for all functions

= Best for XOR-dominated circuits (binate functions)

Negative Unate functions Binate functions
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Modular physical cell design

=

Two transistor pairs
grouped together

XOR2

(c) Giovanni De Micheli [Courtesy: Bobba, DAC 12] 12



Modeling various emerging nanogates
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Biconditional Binary Decision Diagrams

= Native canonical data structure for logic design

= Biconditional expansion:
fw,,)=(v@®w)f(w',w,.,2)+(vew)f(w,w,..,2)

f(v,w,...2) = Each BBDD node:
= Has two branching variables
PV=v = |Implements the biconditional expansion

= Reduces to Shannon’s expansion for
single-input functions

SV=w
PV£SV PV=SV

ft(w’,w,...z) f(ww,..,2)
[Courtesy: Amaru’, JETCAS 14]
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BBDD: Examples

f=a@bOc®®e®g = f=ab+a@b)(c®d)  °  f=ab+betac Y f=(a®b)(b+c)

= The BDD counterparts for these examples have about 50% more nodes!
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Efficient direct mapping of BBDD nodes

MUX-XNOR
f(v,w,..,2)

a = f(W’ ,W,...2) f(w,w,..,z)
f(w’,w,...z) f(w,w,..,2)

Transistor-level
Implementation
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Compact BBDD representations

3-bit adder

= n-bit adder size:
= 3n+1 nodes
= BDD counterpart:

= 5n+2 nodes
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Compact BBDD representations

MAJ7(ab,cdef.2)

7-bit majority

= n-bit majority size:
= 0.25(n? + 7) nodes
= BDD counterpart:

= 0.5n"(n-"0.5n"+1)+1 nodes
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The BBDD optimization tool

Recursive formulation of Boolean operations
Unique table to store BBDD nodes
Performance-oriented memory management
Chain variable reordering

http://Isi.epfl.ch/BBDD BBDD
Package
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Experimental results

= We implemented a BBDD package in C language
= Comparison with CUDD (BDD)

= Both CUDD and BBDD first build the diagrams
and then apply sifting
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Case study: arithmetic restructuring

= Use BBDD to restructure arithmetic circuits prior to synthesis

= Front-end to a commercial synthesis tool

= Real-life telecommunication design: lterative Product Code Decoder

Optimization via BBDD-rewriting
Logic Circuits | Type I/0 BBDD-rewriting Original Gain
Inputs | Outputs Nodes Levels Nodes Levels
adder08_bit.vhd Comb. 16 9 16 8 78 19
bit_comparator.vhd Comb. 5 3 3 | 8 3
comparator_7bits.vhd | Comb. 14 3 21 7 58 14
fulladder.vhd Comb. 3 2 2 1 9 4
ext_val.vhd Comb. 16 8 674 16 173 29 X
twos_c_8bit.vhd Comb. 8 8 20 8 29 8
ser2par8bit.vhd Seq. 11 64 - - - - -
product_code.vhd Top 10 4+ - - - - -
Synthesis in 22-nm CMOS Technology — Clock Period Constraint: 0.6 ns (1.66 GHz)
BBDD + Synthesis Tool Synthesis Tool
Inputs | Outputs | Area (um2) Slack (ns) | Area (qu) Slack (ns) | Constraint met
product_code.vhd | Top 10 4 1291.03 1177.26 -0.12
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Nanotechnology design

= [terative Product Code Decoder

= Analysis after Physical Design:
= 22 nm FINFET
= 22-nm DG-SINWFE 2
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Logic synthesis for design and assessment

Technology evolution

Technology evaluation ﬁ:> ﬂEmerging technologies

New flows for CMOS New abstractions

Comparison to CMOS E J New tools

Benchmark analysis
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Conclusions

= Emerging nano-technologies with enhanced-functionality
devices increase computational density

= New design, synthesis and verification methods stem
from new abstractions of logic devices

= Current logic synthesis is based on specific heuristics:
new models with stronger properties lead us to better
methods and tools for both CMOS and emerging devices
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Thank you

Never stop exploring !!!




